

Quick guide 2018

Rotors overview

Rotor type	Heat recovery	Preferred application	Wave heigh	Thickness of material
Condensations Rotor P	10% 20 30 30 30 30 30 30 30	Systems with no humidification and no cooling	1,4 mm 1,6 mm 1,8 mm 2,0 mm 2,2 mm 2,4 mm	0,06 E 0,1 B
Enthalpie Rotor E	Summer Summer So Sensible Summer So Sensible Summer So Sensible Sensible	Systems with humidification and without cooling	1,4 mm 1,6 mm 1,8 mm 2,0 mm 2,2 mm 2,4 mm	0,06 E 0,1 B
Sorptions Rotor HUgo N	10% 20 30 sensibe and latent, 100 100	Systems with humidification and cooling, reduction of cooling capacity by drying and cooling the external air	1,4 mm 1,6 mm 1,8 mm 2,0 mm 2,2 mm 2,4 mm	0,06 E
Epoxy- Coated Rotor K	Vinter Summer 70 only sensible, summer 70 latent only at Condensation	Systems with high exhaust air requirements such as: - swimming pools - industrial exhaust systems - Adiabatic humidification of exhaust air - Paint booths Adiabatic cooling	1,4 mm 1,6 mm 1,8 mm 2,0 mm 2,2 mm 2,4 mm	0,06 E 0,1 B

Rotor range overview

Housing versions

Housing type

RRU

RRC

RRS

RRT

RRU housing:

Undivided, zinc-plated steel frame with a screwed design

for vertical installation positions

Variable housing dimensions up to max 2500 mm HxW

RRC housing:

Plugged undivided aluminium housing (frame profiles with plastic edge connectors)

for vertical installation positions

Variable housing dimensions up to max 3000 mm HxW

Lining plates made from aluminium, aluminium-zinc or zinc-plated steel

Maintenance-friendly ring seal accessible from the narrow side

RRS housing:

welded zinc-plated steel frame; optionally stainless steel (RRV)

for vertical and horizontal installation positions

Variable housing dimensions up to max 4250 mm HxW

From wheel diameter 2380 mm in divided version - optional special division for smaller design sizes

RRT housing:

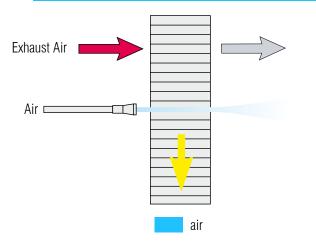
welded aluminium frame

for vertical and horizontal installation positions

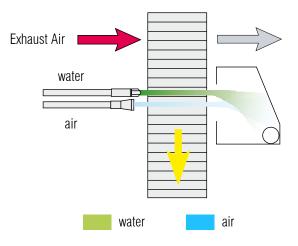
Housing and casing made from saltwater-proof aluminium alloy

Variable housing dimensions up to max 8000 mm HxW

Cleaning


Sensible for ventilation and air conditioning systems with high exhaust air loads.

Cleaning of the storage medium surface with compressed air and/or high-pressure water. Note media provision (compressors and HP modules) and the necessary piping!


The cleaning equipment also has to be cleaned (particularly for wet cleaning)

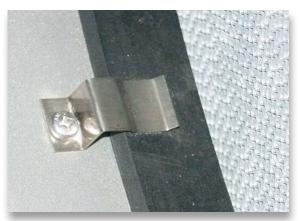
Reinforced media of at least 0.1mm foil thickness recommended for high-pressure cleaning.

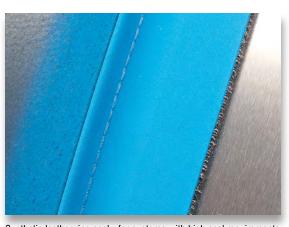
Compressed air cleaning

Compressed Air and pressure water cleaning

Sealing Systems

Reduction of leakage at rotor circumference and water line separation.


Special plastic seal (spring-loaded) for paint booths and systems with very high sealing requirements


Brush seal for standard ventilation and air-conditioning

Pressure-stable felt seal for standard ventilation and air-conditioning

Rubber seal, alternative to felt seal

Synthetic leather ring seal - for systems with high seal requirements

Installation position		- vertical with horizontal or vertical air flow separation	As a general rule, no transfer of external power in the rotor frame - No additional construction required	
	- horizontal installation		- Framed support of rotor and bearing area required	
		- horizontal inclined installation	- Base frame construction and brake motor and/or control system with holding torque and guide plates recommended	
Odour transfe	PF	Depending on the direction of leakage (fan arrangements) and water solubility of the odours, odour transfer takes place with condensation.	Kitchen smells; water-soluble, bathroom smells ;non-water-soluble, use of sorption rotors not recommended.	
Rotor operati	on control			

Gives error messages for unintentional rotor stoppage (e.g. V- belt blockage, break) designed as proximity switch (magnetic) in the rotor housing.

Rotor controller

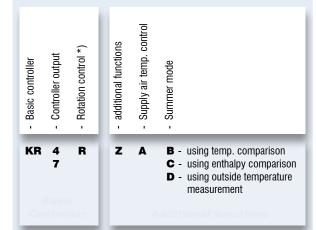
Control of the rotation speed and therefore the recovery efficiency.

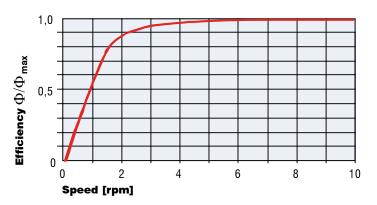
Controller can be specified in measurement and control specifications, retrofitting possible.

Operation with customer provided signal or self-sufficient with rotors with sensors.

The KR controllers for rotary heat exchangers are available in two sizes:

KR4 = 400 Watt and KR7 = 750 Watt


Basic controller:


Controller signal inputs Digital speed indicator Fault indication Intermittent operation Motor thermal protection Rotation control

optional functions:

Sequence switch Supply air temperature control Summer mode

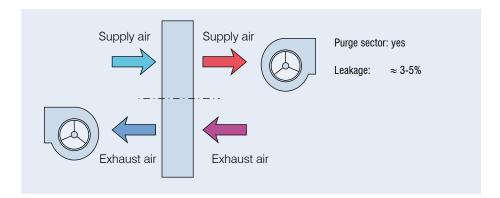
The diagram shows the dependence of the efficiency on the rotor speed

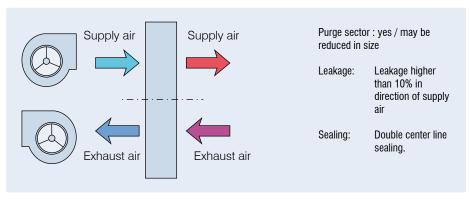
Required additional sensors and optional features

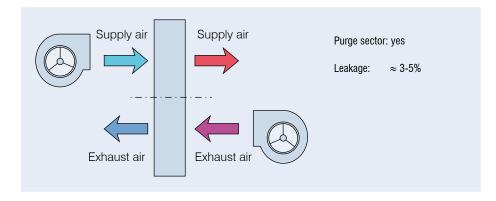
Supply air temperature control 1 sensor in the supply air

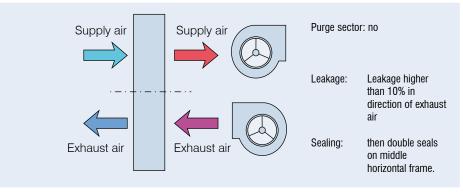
Summer mode using temperature comparison 2 sensors

Summer mode using enthalpy comparison 2 sensors

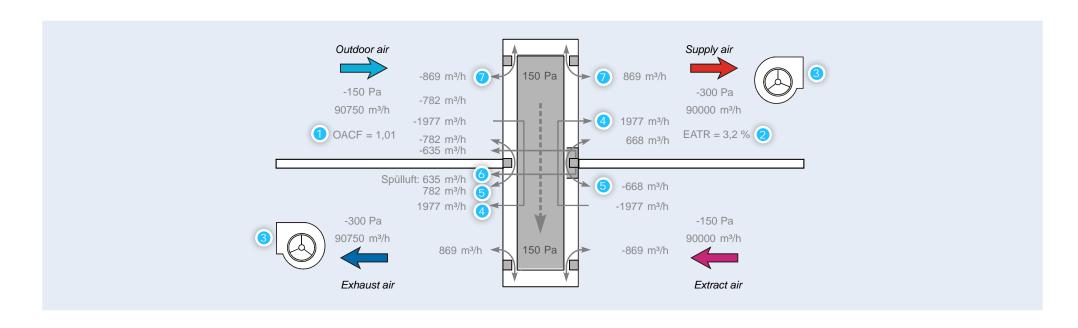

Summer mode using outside temperature measurement 1 sensor




Self-Cleaning Counter-current air flow cleans dry contamination from storage masses. Requirement: rotating rotor and/or activated intermittent operation. Software terminology clarification Operating volume Air volume for given temperatures and relative humidity / 1013 mbar Operating volume Air volume for given temperatures and relative humidities Flow rate Air speed in relation rotor to effective surface, not cross section of duct relates to standard volume Purge sector Avoidance of cross contamination between return and supply air due to rotation. Respect purge sector air-volume in fan layout. Rotational direction: from return air across purge sector to supply air. Purge sector always on warm side of wheel. Purge sector always on warm side of wheel.				
Operating volume Air volume for given temperatures and relative humidities Flow rate Air speed in relation rotor to effective surface, not cross section of duct Pressure loss standard density relates to standard volume Avoidance of cross contamination between return and supply air due to rotation. Respect purge sector air-volume in fan layout. Rotational direction: from return air across purge sector to supply air. Purge sector always on warm side of wheel. extraxt air extraxt air	Self-Cleaning	storage masses.		
Flow rate Air speed in relation rotor to effective surface, not cross section of duct Pressure loss standard density relates to standard volume Avoidance of cross contamination between return and supply air due to rotation. Respect purge sector air-volume in fan layout. Rotational direction: from return air across purge sector to supply air. Purge sector always on warm side of wheel. supply air		Standard volume	Air volume relative to 20°C / 50% relative humidity / 1013 mbar	
Purge sector Avoidance of cross contamination between return and supply air due to rotation. Respect purge sector air-volume in fan layout. Rotational direction: from return air across purge sector to supply air. Purge sector always on warm side of wheel. supply air.		Operating volume	Air volume for given temperatures and relative humidities	
Avoidance of cross contamination between return and supply air due to rotation. Respect purge sector air-volume in fan layout. Rotational direction: from return air across purge sector to supply air. Purge sector always on warm side of wheel. extraxt air		Flow rate	Air speed in relation rotor to effective surface, not cross section of duct	
due to rotation. Respect purge sector air-volume in fan layout. Rotational direction: from return air across purge sector to supply air. Purge sector always on warm side of wheel. extraxt air		Pressure loss standard density	relates to standard volume	
	Purge sector	due to rotation. Respect purge sector air-volume in fan layout. Rotational direction: from return air across purge sector to supply air.	extraxt air	



Purge sector dimensions depend on the pressure difference between the through flows


Water-tight collection chamber with condensate drain

Inclined aluminium tray in rotor housing with drainage at the lowest position for efficient draining of condensate and cleaning fluid.

Required for rotors with cleaning units and/or high levels of condensate.

Leakage and Purge Sector Calculation

OACF: (Outdoor Air Correction Factor) Outdoor Air Volume/Supply Air Volume (possibly < 1) Classification number for increased power of ODA/SUP-fan. Consists of leakage caused by sealing gaps and purge air, if applicable.

EATR: (Exhaust Air Transfer Ratio) Extract Air Volume in Supply Air/Supply Air Volume (>0)
Classification number for the amount of extract air transferred into the supply air.
Under ideal circumstances (use of an effective purge sector) this value can be reduced to nearly 0%. Consists of air transferred due to rotation 4 and leakage caused by sealing gaps 5 and 7.

3 Fan Arrangement:

Influences the pressure situation over the rotor and therefore direction and amount of leakage, as well as a possible purge sector application. Ideal: draw through arrangement on both sides of the rotor.

4 Rotation induced transfer:

Air volume inside the rotor matrix that is cross-transferred to supply and exhaust air by rotation.

Cross-Sealing:

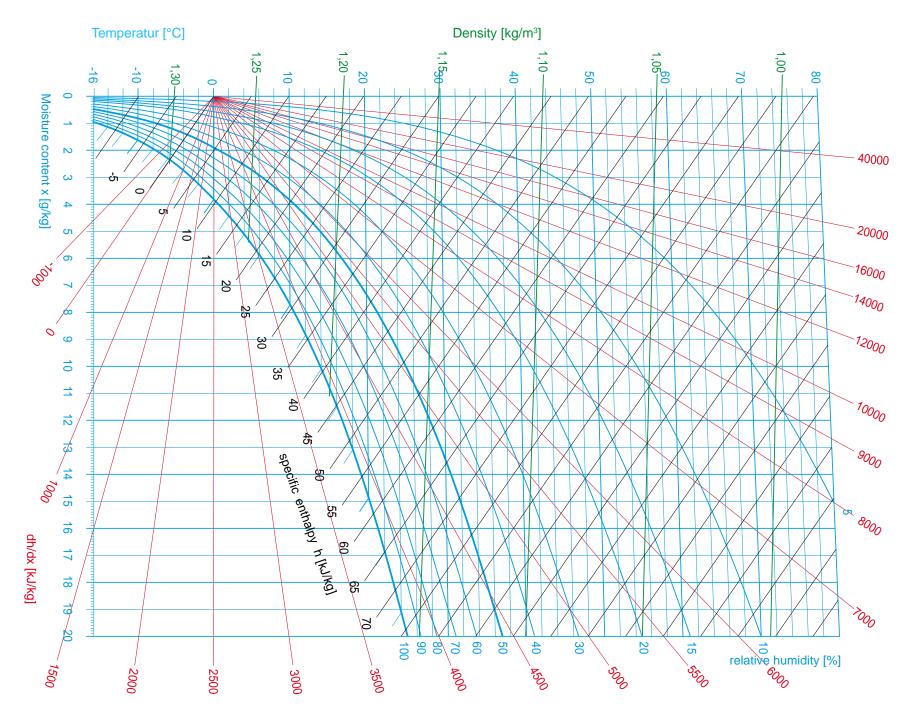
Leakage in the area of the crossbeam separating supply and extract air.

6 Purge Air::

Leakage effective supply air volume that rejects rotation induced transfers from the rotor matrix. Depends on the pressure grade between outdoor and extract air (min. 200 Pa).

To be effective: Purge Air > Rotation induced transfer

Possible purge sector sizes: 2x 2,5° or 2x 5°, depending on the purge pressure


Circumference Sealing:

Leakage depends on the type of sealing used.

For example: Felt with defined sealing gap or sliding seal with reduced gap

Example: RRC - N - E20 - 2000 / 1800 - 1720 **Product Desciption** RRC 14 P 16 RRS E жжж жжж жжж RRT В 18 Housing Housing Wheel height width diameter RRU 20 [mm] [mm] [mm] Housing Type of rotor **Thickness** 22 of material RRC P: E - 0.06 RRS Condensations 24 B - 0.10 RRT rotor RRU E: Enthalpy rotor **Height of** matrix N: Sorption rotor 14 HUgo 16 18 K: 20 Epoxy coated 22 rotor 24

